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I. INTRODUCTION

The Goncarov polynomials are defined by

Go(z) = I

and .

n n-l n-k

Gn(z; ZO, ZI ,... , Zn-l) = ;. - I ( ~ k)' Giz; ZO, ZI ,... , Zk-l),
n. k~On .

(n = 1,2,3,...)

where {Zk}~=O is an arbitrary sequence of complex numbers. These poly
nomials are biorthogonal to the linear functionals

(n = 0, 1,2,...)

that is,

The question of expansion of functions, analytic in a neighborhood of 0, in the
polynomial series

L Ln(j) Gn(z; Zo , ... , Zn-l)
n~O

(1.1)

was first considered by Abel and Goncarov [13]. This expansion can be
shown to converge to the function/in a number of interesting cases.

Suppose that/is an entire function of exponential type less than 1. Let

H n = max I Gn(O; Wo ,... , wn- 1)/,
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where the maximum is taken over all sequences {Wk}~=~ whose terms lie in
the disk Iz I :(; 1, and set

The constant P lies between 1.355 and 1.378; the series (1.1) converges uni
formly on bounded subsets of the plane to the functionjfor each sequence
{zn}~=,o such that I Zn I :(; IjP. This was proved in 1954 by M. A. Evgrafov
[10]. Using different methods, J. D. Buckholtz [2] also obtained the expansion
and proved additionally that

P = lim H~!n = sup H~!n.
n---"oc l<n<oo

The expansion (1.1) also holds for functions with finite radii of convergence.
The first result in this direction is due to M. M. Dragilev [6]: ifjis analytic
in o/L = {z: I z I < I}, °< R < 1, and I Zn I ~ RjP(n + 1), n = 0, 1,2,... ,
then (1.1) converges uniformly to j on compact subsets of o/L.

The remainder polynomials are defined recursively by

and

n-1
Bn(z; ZO, Zl , ... , Zn-1) = zn - L z~-kBiz; ZO, Zl , •.. , Zk-1)' (n = 1,2,3,...).

k~O

In analogy to Goncarov polynomials and derivatives, the remainder poly
nomials have been useful in investigating zeros of remainders of power series.
For a functionJ(z) = I:;~o akzk analytic in a neighborhood ofO, let Y' denote
the operator which transforms j into

Y'J(z) = L anzn- 1,
n=l

and let Y'k be defined as the kth successive iterate of Y'. The function Y'kJ(Z)
is sometimes called the k-th normalized remainder of the power series for f
The remainder polynomials are biorthogonal to the linear functionals

and hence lead us to the Abel-Goncarov series

I In(j) Bn(z; Zo , •.• , Zn-1)'
n=O

(1.2)

M. Pommiez [18] considered this expansion for functions analytic in o/L, with
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the interpolation points {z,.} lying in a closed disk of radius r, r .539, and
showed that (1.2) converges uniformly to.f on compact subsets of Jlt. This
result, however, has been sharpened to best possible form. Let

hn =,~ max I Bn(O; IVo , ... , }I'n-I);,

where I IV; I ~ I for 0 ~ j n - I, and set

p = lim sup h~/n.

M. M. Dragilev [7] and the first author [3] proved independently that for
functions f analytic in 011 and sequences {zn} satisfying I Zn I ~ r < liP,
the series (1.2) converges uniformly to.f on compact subsets of Olt. Note that
liP lies between .549 and .561, giving a better estimate for Pommiez's
constant.

In the present paper, we consider expansions of analytic functions in series
of certain polynomials which specialize to both the Goncarov and remainder
polynomials. The corresponding operator is sufficiently general to deduce the
expansions (1.1) and (1.2) as special cases, and also to obtain similar results
for entire functions of arbitrary order and type.

Let {dn}::'~l denote a nondecreasing sequence of positive numbers and let
I» denote the linear operator defined by ~(Z") = d ll z n - l . Thus if fez) = L:~~o

akzk, then ~ transforms f into

~f(z) = L: dnanzn -
I

.

n~l

The operator ~ is sometimes called the Gel'fond-Leont'ev [12] derivative of
f, and is easily seen to correspond to the ordinary derivative D when dn =-: n
and to Y when dn == I. The operators ~n (n = 1,2,3,...) are the successive
iterates of~. If we let eo = do = I and en = (d1d2 ... dn)-\ for n ~ 1, then

(1.3)

and

(1.4)

for each n. We observe also that the role played by the sequence en is that if
Pn(z) = enzn, then ~(Pn) = Pn-I'

We define the growth measure E-type as follows: if {Rn}::'~o is a non
decreasing sequence of positive numbers, then the E-type of fez) = L:;=o akzk
IS
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The function E defined by

9

E(z) = L zkj(RoR1 ... Rk)
1.;=0

has E-type 1 and radius of convergence

c(E) = sup Rn .
l<n<oo

(Ro = 1)

If c(E) < 00, then TE(f) = c(E)jc(f). If c(E) is infinite, then E-type corre
sponds to a growth measure introduced by L. Nachbin [1, 16]. In particular,
if Rn '== n, then E-type agrees with exponential type. The conditions c(E) = CI)

and "E(f) < 00 clearly imply that f is entire.
In the sequel, we will always require that the sequences {Rn} and {dn }

satisfy the following conditions:

(a) {Rn+1jRnr::~l has limit 1;

(b) {dn+1ldn}:~1 is nonincreasing and has limit 1.

The polynomials Qn(z; Zo , Z1 " .. , Zn-1) are defined by

Qo(Z) = 1

and
n-1

Qn(z; Zo , Z1 , ... , Zn-1) = enzn - L en_kz~-kQk(Z; Zo , Z1 ,... , Zk-1),
k=O

(n = 1,2,3'00')

where {Zk}~~O is a sequence of complex numbers. In Section 2, we prove that
these polynomials are biorthogonal to the linear functionals

The Qn polynomials reduce to the Goncarov polynomials if dn - n and to
the remainder polynomials if dn '== 1. Let

where the maximum is taken over all sequences {Wk}~:~ whose terms lie in
dll (we drop the previous notational convention that H n refers only to the
Goncarov polynomials) and let

W(.@) = {sup H~/n}-1.
l~n<oo

W(!2) is called the Whittaker constant belonging to the operator .@. Clearly
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WeD) = liP and W(/I') = lip. In [3], J. D. Buckholtz and J. L. Frank
characterized the sequence {HnJ and proved that

and

W(.@) = {lim H~;n}-l = {sup H~inrl
n_~ l<n<x

(1.6)

(1.7)

We shall usually abbreviate W(.@) to W when no confusion is likely as to
the operator under consideration.

Our main result here is the following

THEOREM A. If TE(!) ~ I, 0 < c < W, and the sequence {zn} satisfies
I Zn I :(; cRn+lldn+l , then

fez) = I .@nf(zn) Qn(Z; Zo , ... , Zn-l)
n=O

(1.8)

with uniform convergence on compact subsets of I Z i < c(j).

If R n = dn == n, then (1.8) reduces to (1.1) for the case in whichfis entire
with exponential type less than or equal to I. If R n ='" I and dn == n, we obtain
the expansion (1.1) for functions analytic in all and sequences {zn} satisfying
I Zn I :(; 11P(n + 1). If Rn = dn I, then (1.8) reduces to (1.2) forfanalytic
in 0lI.

A natural question associated with (1.8) is whether the constant W can be
replaced by a larger number in Theorem A. That W is best possible is an
easy consequence of the following theorem due to Buckholtz and Frank [4].

THEOREM B. There exists a function F, of E-type 1, such that if c > W
then .@nFhasa zero in I Z i :(; cRn+lldn+lfor all but finitely many n.

Finally, we mention two related expansion problems associated with the
class EPT of entire functions of order p, °< p < 00, and positive type not
exceeding T, T < 00. Let 'Y denote the supremum of numbers c such that if
IE EPT and (n + I)Hl/p) I Zn I :(; C(pT)l/p, for n = 0, 1,2,... , then

fez) = f f(n)(zn) Gn(z; Zo , ... , Zn-l)
n=O

(1.9)

uniformly on bounded sets. In 1962, M. M. Dzrbasjan [9] proved that
'Y ~ log 2. For the sequence Rn = (nlpT)1/ p, fE EpT implies TE(!) :(; 1. If
one takes dn = n, then Theorem A yields (1.9) for any sequence {zn} such
that (n + l)Hl/P) I Zn I :(; WeD) RI(pT)l/p, where °< R < 1, and it follows
that 'Y ~ WeD). In view of Theorem B, 'Y = WeD).
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Let y' denote the supremum of numbers c such that f E EP7 and
I z.. I :s;; c(njp'T)l/ p imply

00

f(z) = L Y"f(z,,) Biz; Zo , ... , Z..-l)
..~o

(1.10)

uniformly on bounded sets. Here, we take R" = (njpT)l/p and d.. = 1.
Theorem A implies (1.10) for I z" I :s;; WVI') R(njpT)l/p, where °< R < 1,
and therefore y' ~ W(.9'). The reverse inequality y' :s;; W(Y) is obtained
from Theorem B.

2. THE POLYNOMIALS Q..

All of the basic properties of these polynomials were developed in [3].
listed below are the properties we 'shall need.

LEMMA 2.1. The following identities hold:

where ,\ is complex,

n ~ 1,

f0kQ ..(Z; Zo '00" zn-1) = Qn-k(Z; Zk ,... , Z..-l),

f0kQn(Zlc ; Zo , ... , Z.._l) = 0nk'

(2.1)

(2.2)

(2.3)

(2.4)

..
Q..(z; Zo '00" Zn-1) = L Qn-k(Wk; Zk '00', Z"_l) Qk(Z; Wo '00" Wk-1), (2.5)

lc~o

Note that Eq. (2.4) is the biorthogonality condition of 1. If, in (2.5), we
take Wk = 0, °:s;; k :s;; n, and use the fact that Qk(Z; 0"00' 0) = ekzk, we
obtain the useful identity

..
Q..(z; Zo '00" Z.._l) = L Qn-k(O; Zk ,... , Z.._l) ekzk. (2.6)

k~O

The following result is our basic tool in obtaining the expansion (1.8).

LEMMA 2.2. Suppose f(z) = L;~o akzk has radius ofconvergence c(f) > 0,
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let 11 be a positive integer and suppose that the complex numbers Zo , ZI ,... , Zn_l
lie in I z: < c(1). Then

n-l
fez) - '\' OAk1'( '7 )' Q (7' '7 7). - L.;L/ ,£.k k"',"O"","-k-l

k~O

+ I !?j;/'f(0) Qk(Z; Zo ,... , Zn-l ,0,... ,0).
k~n

Proof The condition that {dn+ddn} have limit I implies that

lim d~ln = I.
n->CfC

Therefore

!?j;f(z) = I dnanzn- 1

fl=l

has radius of convergence c(1). From (1.3) and (1.4) we have

!?j;kf(Zk) = I !?j;k+mf(O) emzklll
,

m=O

for 0 :(; k :(; n - 1. Substituting this expression into

n-l
I £fjkf(Zk) Qk(Z; Zo ,... , ZH)
k~O

(2.7)

and interchanging to the order of summation, one obtains an equation
equivalent to (2.7). This completes the proof.

3. MATRIX TRANSFORMATIONS ON THE SPACE otr

We denote by ot/r > 0) the complex vector space of functions analytic
in the disk 021r = {z: I Z 1 < r}, with the topology of uniform convergence
on compact subsets of OlIr • The topology of otr can also be defined by the
seminorms

CfC

IIJllp = I I an lpn,
n~O

p < r, (3.1)

wheref(z) = 2.:;-0 akzk. It is well-known that otr is a Frechet space.
For our purposes, it is convenient to move from the function space

otr to its equivalent sequence space by mapping fez) = L;~o akzk onto the
sequence (ao , a1 , a2 , •••). We also adopt the notational convention that the
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sequence space [14], topologized by the seminorms (3.1), be denoted by the
same symbol OtT .

Let M be an infinite complex matrix and let f = (10'/1 ,j; ,...) E otT .
Then Mf is the sequence whose n-th term is given by

00

(Mf)n = L Mnd,c.
k=O

We say that M maps otT into Otr provided that f E otT implies Mf E Otr .
In case M is a homeomorphism, a certain number of expansion theorems

are immediate. In fact, if {un} is any basis in otT , then the images {Mun} also
form a basis. Of particular interest ([1, 20]) is the case in which M is upper
triangular (Mik = 0 whenever j > k) and un(z) = zn. Here, the images
MUn are always polynomials.

The following theorem of M. G. Haplanov [11] characterizes the matrix
transformations of Otr into otr .

THEOREM 3.1. The matrix M maps otT into otr if and only if for each
q > r-1 there exists a number b < r such that

for all j and n.

I Min I < 0(1) qibn (3.2)

By placing fairly restrictive conditions on the matrix M, one can extend
Haplanov's result to the case in which r is allowed to assume values arbitrarily
large.

THEOREM 3.2 (Dragilev). Let M be an infinite upper triangular matrix
such that M kk = l,for 0 ~ k < 00, let N denote the unique upper triangular
inverse ofM, and let R be a positive number. A necessary and sufficient condition
that either M or N map otr one-to-one and onto ot,.jor each r > R is that

and

lim sup {max I Min I Ri-nFln ~ 1
n~oo O~}~n

lim sup {max Nin I Ri-nFln ~.1
n-HQ O<:j~n

(3.3)

(3.4)

Proof This result and Theorem 3.3 below are stated in [6], without
accompanying proofs. For completeness (and the fact that Dragilev's work
is available only in Russian) we will provide proofs.

The sufficiency is straightforward and we omit the details. For the necessity,
suppose, say, that M maps otr one-to-one and onto otr for all r > R. If
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r > Rand q > r-\ then by Theorem 3.1 there is a b < r and a constant
K > 0 such that

for all j and n. For 0 ,,:; j :'~; n we have

i Min I Rj-n "'; K(qrY{bjr)n(rjR)n-i

:::; K(qr)n(rjR)n,

and therefore

lim sup {m!1X I M jn I Rj-nF/n :::; (qr)(rjR).
n-HfJ O~J~n

Inequality (3.3) follows from noting that we can make the quantities (rjR) and
(qr) arbitrarily close to 1.

There remains to show that (3.4) is satisfied. We begin by noting that the
condition (3.2) implies that M is continuous. If T denotes the inverse mapping
of M, the open mapping theorem implies that T is continuous. By a theorem
of Kothe and Toeplitz [17], T is representable by a matrix C. For f E otT ,
we have

[(CM)f]m = I L CmnMndk
k~O n~O

= I L CmnMndk
n=O k=n

'"
== L Cmn{Mf)n

n=O

= [C(Mf)]m,

there being no difficulty in interchanging the order of summation. Therefore
(CM)f = C(Mf) = T(Mf) = f, and it follows that C = N. Since C maps
otT one-to-one and onto otT for r > R, we obtain (3.4) by applying the first
part of the proof to the matrix N.

To obtain the "either-or" statement in the theorem, one simply interchanges
the symbols M and N. This observation also leads to the following corollary.

COROLLARY 3.1. The matrices M and N either simultaneously map otT
one-to-one and onto itselffor each r > R, or neither does.

In applications of Theorem 3.2, it is not necessary to prove (3.3) and (3.4)
directly. Let M and N be defined as in Theorem 3.2 and let M' and N'



ABEL-GONCAROV POLYNOMIAL EXPANSIONS 15

be reciprocal upper triangular matrices which satisfy M~k = N~k = 1,
o ~ k < 00. If r > 0 and 0 ~ j < 00, define

fL;(r) = I I Nin - N;n I ri- n.
n=j

THEOREM 3.3. Let R > 0 and suppose that each of M' and N' map otr
one-to-one and onto otr for all r > R. Suppose also that I Min I ri- n = 0(1),
for all nand j r > R, and that limi~oo fL;(r) = 0 uniformly in (R, 00). Then
each of M and N map ot, one-fo-one and onfo otrfor all r > R.

Proof Since

N = (I + (N - N') M') N',

where I denotes the identity matrix, it suffices to show that the matrix B =
1+ (N - N') M' maps ot, one-to-one and onto ot,. Let C = (N' - N) M',
so that B = 1- C, and for r > R define the matrix C(r) by q~) = Cikri- k.

We begin by showing that c(r) is a compact operator on 11 , with range in
11, for each r > R. If R < r1 < r, the bound I M;n I r{-n = 0(1) implies
that

n

I Ci~) I ~ I I Nik - Nik II M~n ! ri- n
,

k~i

n

~ 0(1) I I Nik - Nile I r~-kri-n,
k~i

For a sequence x E 11, we have

I(d'\)i I ~ f I Ci~) II x n I,
n=j

00

~ 0(1) fL;(r1) I I X n l(r1!r)n-i,
n=j

and therefore, for each nonnegative integer m,

(3.5)
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Thus C(r1x E II' Moreover, our assumptions on {tj(r 1), together with (3.5),
imply that

00

lim L: [(dr\)j I = 0,
1/1.-H;(; .

J=lrt

uniformly on bounded subsets of II , and it follows [8] that Clr) is compact.
Since Clr) maps II to II it follows that C maps otr to otr , and therefore

B = 1- C maps otr to otr for all r > R. To show that B maps one-to-one
and onto, we proceed as follows.

Since Clr) is compact, it will follow that I - Clr) maps II one-to-one and
onto /1 provided that 1 is not an eigenvalue of Clr). The adjoint of Clrl is
representable by the transpose [or)]1 ([17]) and the matrix 1- [Clr)]t is
lower triangular and easily seen to be one-to-one. Thus I is not an eigenvalue
of [c<r)]t and so 1 is not an eigenvalue of Clr). If we let Blr) = I - Clr), then
Blr) maps /1 one-to-one and onto /1 for each r > R, and one can argue
directly from this that B maps otr one-to-one and onto otr for all r > R. This
completes the proof.

4. PROOF OF THEOREM A

Choose a number R, 0 < R < I, suppose that the sequence {zn}~=o satisfies

(n = 0, 1,2,...)

and define

(j = 0,2,...).

Let the matrices A, B, A' and B' be defined as follows: for j ~ n, let

A jn = (R1R2 Rjej/R1R2 ... Rnen) Qn-i(O; Zj ,... , Zn-l),

B jn = (R1R2 Rjejen~j/RIR2 ... Rnen) z;~j,

A;n = Qn_;(O; 'j ,...,'n~l)'
For j < n, we have

R R n-j
1 jej '\' m Q (0' )R R '-' Zj em n-i-m 'ZHm , ... , Zn-l •
1 nen m~O
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By (2.6) and (2.2),
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and therefore BA = 1. Similarly, B'A' = 1. Since these matrices are all
upper triangular, we also have AB = A'B' = I.

We wish to show that A and B satisfy (3.3) and (3.4), and this will be true
provided that A' and B' satisfy the hypotheses of Theorem 3.3.

LEMMA 4.1. Each of A' and B' map otr one-to-one and onto otr for all
r > R.

Proof If j ~ n, then

I B;n I Ri-n ~ (di+l I zi IIRi+l)n-ien_iRi-n

~ en_iWn-i = W n- ild1d2 ... dn- i .

Since {dn } is nondecreasing, (1.7) implies

and thus

lim sup {max I Bin I Ri-np/n ~ I.
n-400 O.:-s;:J~ n

To obtain the corrresponding inequality for the matrix A', let Wk = 'kl(WR)
and observe that (2.1), (1.6) and the conditions I Wk I ~ I imply

I Ain I Ri-n = I Qn-lO; 'i ,... , 'n-l)1 Ri-n,

= (WR)n-i I Qn-lO; Wi ,... , wn_1)IRi-n,

The desired conclusion now follows from Theorem 3.2.
As in Theorem 3.3, let

00

Il-k) = I I Bin - Bin I ri- n,
n=j

We now prove

(r > R,j?, 0)

LEMMA 4.2. I A;n I ri- n = 0(1), for all n, j and r > R, and Il-i ---+ 0
uniformly in (R, 00).
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Proof If r > Rand j /1, then

and this establishes the first part of the lemma. To show that fJ-JCr) --+ 0,
observe that

1I.;(r) = ~ I R l R;e;en_; n-j -? .yn-j I j-n
r, 1... R R e Z} Cn- 3 'oJ r ,

ll=j 1 n n

:S": ~ e . I [. 1"-; rl -" I R l ... Rje; (R;+l )n-1 - 1 [
"" 1... "-3 _3, R R d '

"~i . l'" "e" ;+1

(4.1)

We will show that the hand side of (4.1) tends to °with j. To facilitate this,
we introduce the sequence of functions

Since {d,,} is nondecreasing,

kZ , n = 0, 1,2,....

and it follows that rpn(z) has radius of convergence at least dn+l . Writing

and using the fact that {dn+l/d,,} is nonincreasing, it is easy to show that the
sequence {rpn(l Z I)}:=k is nonincreasing for each z in I z I < dk+1 • Let € > °
and choose ro so that W < ro < dl • Let N be a positive integer such that

(W/ro)N rpN(rO) < ()4.

Choose an integer N 1 ;:?o N such that j ;:?o Nl implies that

(4.2)
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For j ~ N1 , we have
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In view of (4.2), j ~ N1 implies !-tj(r) < E, and this completes the proof.
Collecting the results of Lemmas 4.1 and 4.2, we now have

lim sup {max I Bjn I Rj-np/n ~ I.
n""oo O~j~n

Proof of Theorem A. If k is a positive integer, (2.7) implies

(4.3)

00

~ L I ~nf(O)11 QnCz; Zo ,... , Zk-l, 0,... ,0)1. (4.4)
n-k

Suppose first that c(E) = 00; this implies thatfis entire. Let € > 0 such that
R(1 + EP < 1. Since 'TE(f) ~ I, then

for all n. By (4.3),

I Qj_m(O; Zm ,... , Zj-l) [ ~ 0(1)(1 + E)i Rj-mRl ... Rjej/(R1 ... Rmem)

for all j and m. Equation (2.5) therefore implies

. . i I Z 1
m

I Q;(z; Zo ,... , Zj_l)[ ~ 0(1)(1 + E)' R1 ... RjejRJ L RmR ... Rm
m-O 1

~ 0(1)(1 + E)i R1 ... RjejRjE(1 Z I/R),
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and this yields
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k-l
I Qn(Z; Zo , ... , Zk-l , 0, ... , 0)[ = IenZn -- I en_;z;-;Qlz; Zo , ... , Z;-I) I

J~O

10-1

~ en I z In + 0(1) E(I z IjR) I en-; i z; jn-j(l -i- E); R1 .•. R;e;Ri.
;=0

Thus

00 00

L: I ~nf(O)11 Qn(Z; Zo , ... , Zk-l' 0,... , 0)[ ~ L: I gnf(O)1 en I z In
n~k n~k

00 k-l
+ 0(1) E(I z IjR) L: I ~'1(0)1 L: en_; I z; In-; ell + Ey R1 ... R;R;.

n=k ;=0

Using (1.4) and the bound on Iz; I, the right-hand side of (4.4) does not
exceed

00 00 k-l

L: I an II z In + O(I)E(1 z IjR) L: I fjnf(O) I enRI .,. RnRn L:
n~k n~k ;~o

where fez) = L::~o anzn. From the fact that {dn+1jdn} is nonincreasing, it is
not difficult to show that

Since {Rn } is nondecreasing, we have

R1 .•. R j R'j;!jR1 ... Rn ~ 1.

From these estimates and (1.7), (4, 4) does not exceed

00 00

I I an II z In + 0(1) E(I z IjR) I n[R(1 + €)2]n.
n~k n=k

Therefore, (4.4) tends uniformly to 0 on bounded parts of the plane.
Suppose now that c(E) < 00. Since TE(f) = c(E)jc(f) ~ 1, it suffices to

show that the right-hand side of (4.4) converges to 0 uniformly on compact
subsets of the annulus Rc(E) ~ I z I < c(f). From (2.6) and (4.3),
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Since c(E) = SUPn R n , then

for m ~ j. For Rc(E) ~ I Z I < c(f), we therefore have

i

I Qj(z; Zo , ••• , Zj-l)! ~ 0(1)1 Z Ij ej(l + €)j L (Rc(E)/1 Z ty-m,
m=O

As in (4.5), this shows that the right-hand side of (4.4) does not exceed

00 00 k-l I Ii
L I an II Z In + 0(1) L Rn I an I L R7+1(j + 1)(1 + €)j R/ Ri .
n~k n~k i~O HI
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Since c(E) ?' Ri+l, we have Iz li/Rf+lRi ?' 1. Therefore (4.4) is less than

00 k-l
L I an II Z In + 0(1) L I an II Z In L (j + 1)(1 + €)j
n=k n=k i~O

00 00

L I an II z In + 0(1) L (n + 1)21 an 1[(1 + €)I Z \In.
n=k n=k

Since this last expression can be made arbitrarily small on compact subsets of
Rc(E) ~ I z I < c(f), the proof of Theorem A is complete.
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